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ABSTRACT

7Fibe !o_:,_]egical approach 1:othe analysis of bilateral networks has

been irnporta_t for many years because, for certain classes of networks,

it is computationally very efficient. Within the last ten years many

investigators have conceived and developed extensions of the basic

theory, separate methods to analyze general linear networks which may

containunilat,t_-_,lelernents. One might well ask, "Why so many separate

methods, _'. The answer lies in the complexity of the problem which

offers many possible avenues of development. The main substance of

this paper is a new method which is comparatively simple and well

suited to the analysis of general networks by computer.

The first part of the paper discusses many of the important con-

tributions of the previous investigators. An analysis of the procedures

and selected exanuples for some of the methods are given.

The second part of the paper shows the development of a new

method which is optimal in some senses, A mathematical development

based on several new topological theorems shows how network functions

can be derived from the directed trees and two-trees of a partly ori-

ented graph. It clarifies the relationships between nonoriented, ori-

ented, and partly-oriented graphs and shows that some earlier methods

using oriented graphs overspecify the network with redundant infor-

mation for each bilateral element.
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AN OPTIMAl, STRATEGY FOR TOPOLOGICAL ANALYSIS

OF GET\,rEI_ ,.':,.I_NETWORKS BY COMPUTER

BY

ROBERT M. MUNOZ

AND

S. PARK CHAIN

II-,7T R ODUC TION

Topological methods of network analysis have had a long history of

development from the time of Kirchhoff and Maxwell. Many investiga-

tors in the academic community have been very faithful about reporting

contributions of predecessors and contemporaries in the field and have

generally contributed to the large fund of knowledge presently available

on the subject. Men such as Percival EZ] , Coates [4] , Mason [3_ ,

Mayeda _I_ , Seshu El0] , and manyothers have eachmade some

important contributions and when taken together their efforts in topo-

logical analysis constitute a definitive body of knowledge on the subject.

So many different and in some aspects redundant methods have been

introduced that a re-evaluation and a survey of these methods according

to the standards that exist in engineering practice today should be of

great value. One objective of this paper is to attempt such a re-

evaluation.

It is certainly not possible to say what Kirchhoff and Maxwell held

as a prime motivation for instituting the topological analysis technique

but it is possible to say that for most practitioners of the art today,

the ability to analyze small electrical networks by hand and the ability

to formulate efficient computer analysis routines for intermediate

size networks represents the consensus. The efficiency and the

simplicity of the topological technique can hardly be disputed when

compared with certain other methods of analysis though this fact might
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easily be obscured in the process of reading through some of the math-

ematical proofs and derivations presented by the numerous investiga-

tor,s.

Because of this promise of simplicity and efficiency in hand cal-

culation and the possibility of improving on the state-of-the-art in com-

puter aided topological analysis, the purpose of this paper is to review

the important recent contributions to the art and present a new and

improved method.

Fundamental Characteristics of the Topological Method.

The topological method is basically a symbolic method and can be

compared with numerical methods such as the state-space and matrix

methods based on Kirchhoffls voltage and current equations. Because

this is true, none of the problems of numerical stability or accumulation

of error found in the numerical method are encountered until an actual

numerical result is required. A network can be analyzed symbolically

and a numerical result can be derived from a symbolic solution by

assigning numerical values at the end of the analysis process. One can,

by these means, obtain any desired degree of accuracy. This may seem

_t first to be a trivial recommendation, however in practice, this prob-

lem of accuracy and numerical stability has become the dominant prob-

lem. There is a price to be paid for symbolic analysis however. It

shows up clearly when a network of approximately fifteen nodes and

twenty branches is analyzed in computer. For such a network there is

a possibility of obtaining over 150,000 terms in the expansion of the

determinant of the node admittance matrix. Clearly, such a network is

too large to deal with by hand and the value of knowing symbolicly the

relationships between 20 network elements is questionable. Since the

complexity of symbolic analysis grows disproportionately with increas-

ing network size, a finite Bound exists on the application of this tech-

nique even when the computer is used and numerical values are

substituted into the symbolic analysis results to produce an answer.

-2-



For the larger networks, the greatest promise seems to be offered by

the state-space technique if the numerical difficulties can be overcon_e.

In computing the frequency characteristics of a network by state-

space analysis, it is necessary to evaluate the function (sl-A) where s

is the complex frequency, Ais the state-space parameter matrix char-

acterizing the network, and I is the identity matrix. This is essentially

a symbolic matrix in s with numerical coefficients if A is entirely

numerical. Procedures such as the Faddeev Frame Souriau algorithm

[16_ have been used but with difficulty because unexpected errors can

easily accumulate and cause trouble. Recent experiences with the QR

algorithm of Francis _2Z_ E23_ indicate that better results are pos-

sible. However, there are still problems especially for networks with

combinations of small and large time constants. Networks of this type

cause the eigenvalues of the (sI-A) matrix (natural resonances of the

network) to vary over large numerical limits thus precipitating the

problems peculiar to the "Ill Behaved Matrix". Signal flow graph meth-

ods are another topological technique for network analysis and, as shown

methods discussed here. Happ, Carpenter _20_ and others have used

flow graph techniques in computer aided analysis and one cannot com-

pletely discount the possibility of important developments in this field.

Pritsker [21_ has also used a graph reduction technique and has shown

the value of this technique in evaluating weighted schedule diagrams.

But we will not discuss flow graph methods, per se, further in this

paper.

Organization of the Paper.

The major content of this paper has been divided into three parts.

The first part constitutes a review of a number of recent papers on

topological analysis. Each of these papers will be discussed individually

according to the following format: A short outline of the procedure for

obtaining the determinant of the node admittance matrix of a general
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nonreciprocn] l_et_._;or]zwJllbe presented. This will be accompanied in

each carsc IJy dis_:u_siol; of _:herecommending features and the weak

points as they appJy to ]_and and computer aided analysis. Examples

of the proced_res will bc presented.

The _ccond raajor part of the paper will be a comparative discus-

sion of all the _aet],ods that were reviewed in the first part and an anal-

ysis of the corrn_on features among all methods. A serious attempt to

obtain an ol_jecti_.r: conaparison will be made, however, some of the

argument_ pL'e:_ented_night justifiably be considered arbitrary from

the point of view of those with different objectives in mind.

In the third part of this paper a new method of topological analysis

of general networks will be presented. Here an attempt is made to

restructure and simplify earlier techniques showing the very close rela-

tionship between topological analysis for general networks and that for

reciprocal networks. An outline of a proof for this technique is pre-

sented and appropriate examples are worked to illustrate the method.

-4-



TOPOLOGICAL ANALYSIS OF GENERAL NETWORKS BY THE METHOD

OF D. P. BROWN.

In the development of ordinary topological analysis of bilateral

networks, a relationship is made between the terms in the determinant

of the node admittance matrix and the trees of the graph associated with

the network. This relationship demands that the network edge admit-

tance matrix be diagonal. In the analysis of general networks, the edge

admittance matrix is not necessarily diagonal. In order to rectify this

unfortunate fact of life, Brown has devised a way to model all non-re-

ciprocal elements by a 2 x 2 submatrix of admittances. This sub-ma-

trix is then treated as a single admittance and the ordinary rules for

finding network functions by finding trees of the network graph are used.

It is then necessary to expand the result thus obtained by the determi-

nants of the matrices representing the coupled elements. Because the

algebraic modeling process is somewhat complex and the rules for

determining the admittance products are quite involved, the method

seems very cumbersome. The following is a step by step procedure of

the method.

Preliminary Limitation.

No coupled elements which produce a singular 2 x 2 admittance

matrix are allowed.

Procedure.

I. Describe all coupled elements by means of a 2 x 2 matrix relating

the voltage and current in these elements.

II.

IIl.

Assign voltage directions across each element.

Arrange an oriented graph G of all elements. It is necessary to

retain edge orientation even for passive elements.
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IV. Find all trees of Go

Vl

VI.

Inspect all the tre{_{ and co_:,pute tree admittance products accord-
!

ing to sub-proced_Ire i for l_hose trees which do not contain any

coupled elements (one of twc_ elements expressed by the 2 x 2

matrices computed in I above).

Sub-procedure Io

This procedure identifies all trees containing only bilateral

or uncoupled elements and treats them as a separate set. Tree

admittance products are con-_puted for every member of this set

in the ordinary manner. For example, if the following are trees
F

containing only bilateral elements: _I, 2, 3; i, 2, 4; i, 3, 4_

, (then the tree admittance parameters al'e: Y1 Y2 Y3' Y1 Y2 4'

Y1 Y3 Y4) "

For those trees which contain coupled elements, inspect and sep-

arate out all those that contain both elements of a coupled set and

compute the tree admittance products according to sub-proce-

dure 2.

Sub-procedure 2.

This procedure identifies all trees containing both elements

of a coupled pair and treats them as a separate set. Tree admit-

tance products are computed for every member of this set by

first computing the determinant of the admittance matrix YA rep-

resenting the volt-amp relationships between the coupled elements,

then, using the result as a factor representing the pair, compute

the required admittance product. For example, let elements a

and b be coupled elements. Further, assume that a tree 1, 2,

a, b, 3 exists. The determinant of the admittance matrix

-6-



rcpresenti_g t_,ecoupl_d pair is Y aa Ybb Yab Yba and the tree

;;./]J_ittanc,:_product is'. Y1 Y2 Y3 Yaa Ybb - Y1 Y2 Y3 Yah Yba"

VII. For those tr_:es wh,.ch <c,ntain only one element of a coupled set

or groups of elements of coupled sets, the counterparts of which

are not in the tree, comp{ite tree admittance products according

to sub-procedure :3.

Sub-procedure 3.

This procc;dure identifies all trees containing one element

A of a coupled pair oi"coupled pairs a , b . The other ele-
P P

ment or elements b which are not in the tree must therefore be
P

chords or links° 'Free admittance products are computed for

every mere.bet of the set by first computing the determinant of a

special matrLx Y representing the interrelationships between
e

these elements. Then, using this result as a factor representing

the elements, the tree admittance products are computed.

The order of the special matrix is p where p is the number

of coupled elements with no counterpart in the tree in question.

Diagonal entries in Y are found in the following way:
e

y if the pth edge does not
a j a

P P lie in the loop completed

by b •
P

+ Ybp,
Y a -- a
ap, P P

if the pth edge lies in the

loop completed by link

b and the + sign is taken
P

if a and b have the same
P P

orientation.
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Off diagonal elements of Y are found in the following way:
e

Y
qP

+Yb a if the edge a lies in the
, q

P P loop completed by bp.

0 otherwise and the + sign

is taken for confluence of

a and b •
q P

As an example• consider the tree I, 2, al, 3• a2. Assuming the

following topology for the tree:

l

Y
e

and ,

ir

Det Y
2

I

Y 0
a 1

(Ybl• Yal ) (Ya2 •

(Yal • a 1) (Ya2 a 2

a2 + Yb2 , a2)

+ Yb2 • a2).
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Therefore, the tree admittance product computed for this tree is:

¥I Yz Y3 (¥ ) (¥ a2)al_ a I a2,

+ Y1 YZ Y3 (Yai, a I) (Yb 2, a2)"

VIII. For those trees which contai_ both elements of coupled sets as

well as single elements with their counterparts, a combination

of sub-procedures 2 and 3 is used. Since the classes discussed

in VI and VII above are mutually exclusive, it is enough to mul-

tiply Det Ye of sub-procedure 3 by Oet Yal Det Ya " he'"Det Ya
of sub-procedure Z and also by the admittances Y 2f t uncou-

I

pled elements to obtain tree admittance parameters for trees of

this typ eo

Z_o Sum the products developed in V, VI, VII and VIII above to produce

the determinant of the node admittance matrix. An example is

shown in figure I.

V.

in

a

+!

b c

V

---- •

w

+
V

C

= v
O

Figure I.

Example Network.
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Our first probie_r, is to find out the nature of the coupled network

irnmcsbcd withh_ the total network. This cannot be done easily

for the gener_[ c,tze,by inspection and therefore represents a

separate computational task which in some ways is irrelevant to

the ideal topological approach. Only certain kinds of coupled net-

works are permissible - those which produce a nonsingular 2 x 2

submatrix within the otherwise diagonal matrix of admittances

representing the network. Let us consider the Kirchhoffls current

law equations of this network expressed in matrix form as follows:

YN VN = IN"

Specifically for this network:

m

(YI + Yz + Y3 ) -Y3 0

-(Yg + Y3 ) (Y3 + Y4 + Y5 ) -Y5

Yg -Y5 (Y5 + Y6 )

v
a

v h

V
C

m m

m

Yl

= 0

0

m

Vin

Let us decompose this expression into topological information and

admittance parameters by recognizing that:

Y = A Y A-
n e

where A is the incidence matrix of the graph which represents the

network and Y is the edge admittance matrix.
e

A ._

1 Z 3 4 5 6

a I1 1 I 0 0 0 l.J
b 0 0 -I I i 0

c o o o o -1 1..
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If we treat Y as an unknown matrix X, with coupled edges repre-
e

sented by entries in columns Z and 5, we have:
1 2 5 3 4 6

m

Xll
l

2

5

3

4

6

y m- X =

e

x2 2 x25

x5 2 x55

x33

x4 4

x66

Rearranging the coupling elements 2 and 5 in the Amatrix, we

have :

A

and,

1 2 5 3 4 6

a I1 1 0 1 0 01

b 0 0 i -I i 0

c 0 0 -I 0 0 1

I I 0 I 0 0

0 0 I -I I 0

AY 2 = 0 0 -I 0 0 I
m

Xll

m

x22 x25

x5 2 x55

x33

Xl I x22 x25 x33 0 0

0 x5 2 x55 -x 33 x4 4 0

0 -x52 -x55 0 0 x61

x44

x6_
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A Y
e

Xll

0

At = y
n

x22

x52

"x5 2

x25

x55

"x55

x33

-x33

0

0

x44

0

0

0

x6!

1 0 0

1 0 0

0 1 -I

1 -I 0

0 1 0

0 0 1

X1V2_X33

"- X --X
52 33

-x5 2

m

x25"x33 -x25

x 3+x +x 53 44 5 -x55

-x55 x5_x6_

Each term in this matrix can be equated with a term in the Y
n

matrix given earlier and the values of the xWs are found in terms

of the y's.
Xll = Yl x44= Y4 x25 = 0

x22 = Y2 x55 = Y5 x52 = Yg

x33 = Y3 x66 = Y6 "

Our coupled group is therefore:

m

Y2

Y
c

Y V = I,
C C C

0

Y5

or

Y2Yg lY v5 i 5

-12-



']?hi:_];_!i,.v-oll;..anU-relation for a loaded voltage controlled cur-

rent sor!,:c_ _uch a_: i:hatshown in figure 2. If the current gener-

alo:,:hac] riot:oeen shunted by admittance Y5' we would have had a

singula; rr_atrix and the problem could not be solved in this way.

The graph associated with the original network is shown in

figure 3,

Gornputin_ trees ol the graph G, we have:

(_22___3_66__)
346 146 ( 245)

C3 ._5_ 6 ) ,( 1 5 6 ) ( 2 4 6 )

CL. 3 5) (_. 3 5) (2 5 6)
1 3 6

The trees encircled are those containing coupled elements.

+

Q

V2 Y2

A

v

i5

A

V

v5

A

V

Figure 2.

Voltage Controlled Current Source.
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3

r

Figure 3.

Graph of the Example Network.

For uncoupled elements, tree admittance products are com-

puted exactly as they would be in ordinary topological analysis of

passive networks.

The following is a list of trees without coupling elements

associated with their tree admittance products as obtained by sub-

procedure 1.

1 3 6 __ Yl Y3 Y6

1 4 6 __ Yl Y4 Y6

3 4 6 ----_-_ Y3 Y4 Y6"

For trees containing coupling elements, the very complex set

of rules used to establish edge weight will be shown.

-14-



.[._:_,:_;__iz]t_ance prod,_cts obtained by sub-procedure 2 are as

.{ol].o_,__s :

2 3 5 _ Y3 Det Yc = Y2 Y3 Y5

2 4 5 _ Y4 Det Yc = Y2 Y4 Y5

2 5 6 "----_> Y6 Det Yc = Y2 Y5 Y6"

Fhos_ obtained by sub-procedure 3 are as follows:

1 3 5 _> Yl Y3 Y5

1 4 5 _ Yl Y4 Y5

1 5 6 _> Yl Y5 Y6

2 3 6 ----C__ (Y2 " Yg) (Y3 Y6 )

2 4 6 -----Z_> Y2 Y4 Y6

3 4 5 _> Y3 Y4 Y5

3 5 6 _> Y3 Y5 Y6 "

Therefore :

Yl Y3 Y6 + Yl Y4 Y6 + Y3 Y4 Y6 +

+Y2 Y3 Y5 + Y2 Y4 Y5 + Y2 Y5 Y6 +

+Yl Y3 Y5 + Yl Y4 Y5 + Yl Y5 Y6 +

-Yg Y2 Y3 + Y2 Y3 Y6 + Y2 Y4 Y6 +

+Y3 Y4 Y5 + Y3 Y5 Y6

-15-



I_ order t.(_beg_ this topological process it is necessary to

rrJodel nor1-J:ecii_rocal e].err_entsby small matrices. This is an

irJvolve4 process _:oper_r_rn by hand and a challenging program-

_mi_g pro'blelv_ if done by computer. Here an algebraic step is

i_'_iectedir_tothe solution and one can question whether it is still

valid i_ the general case to consider the method exclusively topo-

logical° It rnigh_ be more meaningful if the original network

t_polog]i-"were rr_o@ifiec_to ease the burden of subsequent compu-

_:ationo Brown claims the advantage of using original network

topology but this is obviously a complicating restraint. Further-

_'_ore it is not possible to live within this restraint if a network

containing a non-loaded current generator or certain other kinds

of active networks are encountered. This fact coupled with the

difficulty of obtaining tree admittance products by three separate

sub-procedures results in complexity that diminishes the utility of

tfhemethod. The necessity for forming a fully oriented graph and

_ising edge orientation in sub-procedure 3 in the determination of

the admittance products also complicates the method. Most of the

difficulty of computing sign terms is eleminated but the price that

is paid shows mainly in sub-procedure 3.

-16-



FOP,3I, JGICAL ANALYSIS OF GENERAL NETWORKS BY THE METHOD

OF W o K. CHEN.

Chen has approached the problem of network analysis from a

solzoewhat different point of view. He assumes as a point of departure

that analysis is being done by hand and that the node admittance matrix

or loop impedance matrix is available. This assumption is somewhat

limiting in that the algebraic formation of these matrices should, if

possible, be avoided if we are to exploit all the benefits of the top.log-

ical method. However, the method is stillvery useful under the condi-

tions for which it was intended.

Once the loop impedance or node admittance matrix is formed,

Chen has shown that a directed graph representing the matrix can be

used to compute determinants and cofactors which, of course, can in

turn, be used to compute network functions. These determinants and

cofactors are shown to be obtainable from the directed trees and direc-

ted 2-trees of the graph.

Procedure.

Io Form the node admittance matrix. (One could proceed in simular

manner with loop impedance matrix. )

II. Form the directed graph or digraph G from the entries in the

node admittance matrix according to the following rules:

a. There are (n + I) vertices where n is the order of the node

admittance matrix Y (vertex r being the reference vertex).n

b. Identify each diagonal entry bii in Y with a directed edgen

ifrom the vertex i in G to thereferencevertex r. Orientation

of the edge is toward r and the value of the edge is:

-17-



Edge value
for diagonal =
entries

n

b.. _ K b. _,

11 1X

x / i

Co Identify all off diagonal entries b.. with an oriented edge
U

directed from vertex i toward vertex j with value b...
D

Find all directed trees of the graph terminating at the reference

vertex. Adirected tree is a tree with edges whose orientation is

confluent toward the reference vertex.

IV. Compute the determinant A of Y n

admittance products,

as the sum of directed tree

A very simple nonreciprocal network N shown in figure 4 will be

used to demonstrate Chen's method.

The linear directed graph G corresponding to N is shown in figure 5.

The node admittance matrix Y
n

reference is:

for G written with vertex r as

Y
n

a

b

a b

m

(Yl + Yz } o

Yg Y3

,-,18-



V.

r

i

E
O

v
o

O

Figure 4.

Example Network N.

(Yl

a
yg b

÷

\

r

Yg)

Figure 5.

Graph G of Example Network N.
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F'rom graph G , it can be seen that some of the intui-

tive significance of the topological method is lost. The edges

(Yl ÷ Y2 ) and (Y3 - Yg) are no longer simply identifiable with _et-

work parameters. The directed trees terminating on the reference

-_ertex r are as follows:

a b

_4_-K----O

'_Y! + Y2 ) Yg (Yl + Yz ) .

r

a b

(Yl + Y2 ) _(Y3 = Yg)

and thereforej

(Y3 " Yg) (Yl + y2 } •

YgYl + YgY2 + YlY3 " YgYl " YgY2 + Y2Y3

= (Yl + Y2 ) (Y3)"

Here the interesting fact of cancellations pertinent to all topo-

logical methods for nonreciprocal networks is demonstrated.

Although topological methods normally reduce cancellations and

the attendant amount of computational labor involved in evaluating

A, this is not always the case. No method of avoiding cancel-

lations entirely has yet been devised.

-20-



Chen's method improves )nthe method of Mayeda [I] and

Coates [4] by consolid:_tii_: two _raphs, the voltage and current

graphs, into one dirc, t_:d gr_ph. ChenWsgraph is nonetheless

more complex than necessary because two edges are used for

each bilateral element not touching the reference vertex. Our
example did not show this fact because the reference vertex was

common to all adrnitta_,_ceeie_nqents°

Since Chenls stated ob.}ective was the reduction of the labor

of computing the network determinant A and its cofactors, no attempt was

made in his paper to discuss the formal relationships between

the graph and the original net-work. Other investigators, however,

have more than made _Ipfor this defficiency.

The importance of Chenls contribution lies mainly in the

concept of the directed tree admittance products. Using this

concept, he has avoided the difficult problem of determining the

sign of the terms in the expansion of A.

-21 -



TOII?OLOCHrI;.AL .AbIAL"/SIS OF GENERAL NETWORKS BY THE METHOD

OF S. J,, J_.,JA/_ O]J.

]vJ__r',i'_ has prese):Jte@ a iT_<_t]lodof topological analysis of general

linear net_vor]< _ v_hJch doe s not require any intermediate algebraic operstions

beyond t]_ose of nervy.r]< modeling. If one considers a simple network

transforr_zation, where unilateral elements are modeled by their math-

ematical count_zrparts_ as _:opo]ogical, then the entire method is purely

topological, l_his fact is signiiicant to the extent that it allows a reduc-

tion in t})c ai'no_int of labor envo]ved in computing network functions.

When ]v}ason developed his method in 1957, very little was being

done in automatic analysis by computer and his work bears the flavor

of this en_phasizing its applicability to hand analysis. Since that time,

a considerable interest has developed in computer aided analysis and

many of the benefits of reduction in computational effort carry over to

remain valuable i:othis new field but, since the computer is not as per-

ceptive as the human, a considerable amount of the work requires revi-

sion before il can be considered compatible. Specifically the method

requires simplification and the elimination of those steps which neces-

sitate recognition of the more complex models of unilateral elements,

the method can be divided into three parts: First; modeling of the

original network with ideal elements and generating a linear partly

oriented graph. Second; finding directed trees of the partly oriented

graph. Third; computing network functions form the trees thus pro-

duced.

Procedure.

Io Start with a general network and reduce all unilateral elements

to one of the following:

a. A current source whose value depends on the voltage of one

terminal (transadmittance).
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Re A current source whose value depends on the sum of the

voltages found on each terminal (Gyristor).

Co Combinations of a and b above such as the Gyrator, (a con-

fluent ring of 3 Gyristors) or the unator (a confluent ring of

3 transadmittance s).

As an example of this process, consider a voltage controlled cur-

rent source immeshed in a simple network.

V
In

v

© i

m

r

i = yg Vin
2

_ i R 2V ut

0

The graph for this network using transadmittance modeling is:

2
1 +Yg

r
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Other more con-_plex _ nz,odels could be usc_d but this model has thu

merit of being the sir_pb,sI b_cause, i_ o_(J_r to make an isomorphi_

transformation, it is _ecessary to account for all currents at vertex i_

but a transadmittance element frov_)vertex 1 to vertex 2 alone does not

accomplish this. It is necessary therefore in the general case to pro-

vide a transadmittance el_,'rr_entfron_ the control vertex to both the

source vertex and the sink vertex of the generator.

LIo Form a linear, partly oriented graph of the transformed network.

In such a graph, bilateral elelT_ents are represented by undirected

edges and unilateral elements by directed edges as indicated in

I above,

III. For a reciprocal network, compute its node determinant as tre,:

admittance products in the ordinary sense. Mason shows that the

determinant can be expanded as the sum of all possible path

cofactors for paths between any two vertices in the network. The

path cofactors are tree admittance products for a new network

where all vertices in the path are coalesced to a single vertex.

IV. For anonreciprocal network, specify the reference vertex.

Vo Compute all tree admittance products with the following modifi-

cations:

ao Multiply tree admittance products by (-I) m where m is the

number of gyristors_ if any, pointing away from the refer-

ence vertex in that tree.

bo Multiply a tree admittance product by zero if any unistor

points away from the reference vertex in that tree.
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Using the network of figure 1 as an example, a linear graph

using the unistor or transadmittance element is formed as shown

in figure 6 by the method of I above, and the trees of this graph

are computed.

Y

-Yg

= Y7

= Y8

Y3 Y5

Yl Y2 Y4 Y6

Figure 6.

Graph of the Network of Figure 1 Using Masonls Method.

Trees less those with directed edges pointing away from the

reference vertex (such as 138, 148, 478, and 248) are:

135 235 345 458

136 236 346 467

145 245 356 468

146 246 368 567

156 256 457 368
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.Aftel _:ar,<:ei]i_Tgterm:_ v,,_._:],,equal magnitude and opposite signs

such a.:_Y5 Y6 _T7 and 75 /.% 78 (so that Y5 Y6 Y7 + Y5 Y6 Y8 = 0),

iha.v_:_,:be<.fctern_hLar, t.of _:he :,:;odeadmittance matrix:

\_t C

Yl Y3 Y5 + y! Y3 Y6 + Yl Y4 Y5 + Yl Y4 Y6

+ Yl _5 Y6 + Y2 Y3 Y5 + Y2 Y3 Y6 + Y2 Y4 Y5

+ Y2 Y4 "_'6 + Y3 Y4 Y5 + Y2 Y5 Y6 + Y3 Y4 Y6

+ Y3 Y5 Y6 " Yg Y3 Y6 "

:_asonls r_ethod is a direct outgrowth of the concepts devel-

oped "by Percival, Mayeda, Coates, and others, but it improves

upo:n tl,em by showing the simple relationships between the topo-

logical analysis of reciprocal networks and that of non-reciprocal

networks. With son%e irlodifications and a restructuring of the

basic orientation it forms the basis of an excellent method of com-

puter aided analysis. Nathan has proposed an identical graph

structure but a different and very much more complex method of

finding _'admissible" tree admittance products. It is not difficult to

show that the partly directed graph used by both Mason and Nathan

is the simplest graph representation possible for characterizing a

network. It is clear that the basic topological quantity, the edge

bounded by its two end points or vertices is the simplest model for

bilateral elements. The directed edge is likewise the simplest

model for unilateral elements. Since most generators require two

directed edges, one might question whether it is possible to model

such a generator with only one edge. It is indeed possible but, the

dependence relationships which are established would have to be

conveyed by means other than topological, such as a 2 x 2 matrix

or simultaneous equations. Since this is non-topological infor-

mation, it is eliminated as a possibility. The two directed edges
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are thus seen to be the simplest purely topological model which

expresses all dependence relationships.

One of the primary objectives in Masonls paper is to show

the means for graphically expanding the terms of the determinant

of the node admittance matrix. This fact has subdued the more

important general topological method emphasized here and has

led to a misunderstanding on the part of some that it is not direc-

tly related to the mainstream of developments in topology. Seshu

and Reed [i0] have dismissed the method unfairly in a summary

manner and emphasized the compartively cumbersome metho8

of Mayeda et. al. Though the topological expansion of determinants

may have great future significan ce, especially in computer mani-

pulation of matrices, the importance of the direct topological

analysis by means of trees of a partly oriented graph should not

be underestimated.
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TOPOLOGICAL ANALYSIS OF GElX,it']R/!_L NF {'WORKS BY THE METHOD

OF _ NATHAN.

Nathanls method is similar to that of l_lason with the exception of

the manner in which tree admittance products are obtained. Nathan

requires use of newly defined topological entities such as "loop-trees :_

and "loop-woods" which challenge the imagination with the very

unseemly juxtapositio_ within a single term of the concepts of

directed loops and directed "_rees. Although the rules of formation of

looptrees and loopwoods are straightforward enough, they are nonethe-

less complex to the point that diminishes the plausibility for their use

in computer programs. Recognition of the loopwoods without error is

very difficult for a hand analysis of a network of intermediate size.

Any systematic procedure based on this method would be required to

identify all directed loops as well as directed trees. In addition itwould

alsobe required to identify sets of nth order loops in a manner similar

to Masonls gain formula. This is a computational hazzard. The bene-

fit of doing so, however, lies in the fact that many fewer trees need

be found where directed loops exist. This corresponds roughly to

removing common factors in the expansion of the determinent of the net-

work. Since finding loops is as difficult as finding trees By computer,

the method is not ideally suited to machine irnplemintation. It would

be better to find only loops or only trees.

In his paper, Nathan makes the claim that a desirable objective

which he seeks is the determination of network quantities from a graph

which is topologically identical to the given network and indeed he has

come remarkably close to accomplishing this task, but some differences

do and must exist in certain cases. Because he models the

unilateral elements with transadmittances, the net_vork transformation

listed in the following procedure is required. Nathanls recent paper [16]

seems to have ignored the fact that Masonls [3] has proposed the same

partly directed graph. Nathan says, referring to signal flow graphs,

" . . . this graph is much more complicated than that of the original
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netwo_]_ since it replaces _ach rcriprovcal branch by two parallel

branchcs"o All this is true re," si;tnal flow graphs, but in reference [3]

Mason very br_eflT_ has shown that the simplest graph of a general net-

wor]_ can be used to con_pute the oeterminant of the node admittance

matrix:. In this Mason has s_own the way and Nathan has subsequently

and correctly concurred. _athan has succeeded in reducing difficulty in

sign detern_ination. All sign information is taken into account in the

formation of the Inopwoods.

Pr oc edure.

i. Convert all unilateral network elements into equivalent transad-

mittances as shown earlier for Mason's method.

IIo

III.

Draw a linear partly oriented graph of the transformed network.

Find all directed loops - these are loops of directed edges each of

which is confluent with the others.

IVo Find all directed loop trees - these are directed trees with refer-

ence vertices. Compute loopwoods of all orders. These are sets

of loop trees common to loops found in ITT above. The loopwood of

order zero degenerates to the set of ordinary directed trees of the

network. The first order loopwood corresponds to the 2-trees of

ordinary topological analysis with the exception that one loop at a

time containing a gain or unilateral element is included. Higher

order loops taken two at a time, three at a time, etc. are treated

in a manner similar to that used in Masonls gain formula for sig-

nal flow graphs.

The rules of determining the symetric and asymetric cofactors

of the node determinant by this method are quite complex. For

those who desire a more detailed description_ reference [6] serves

as the best guide.
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L_:J:us consider again the example of figure I. Our first step

Js to <onstr_ct a suitab]e mathematical model where the generator

Js rep_'_;_ented by two transadmittance elements; one supplying

positive' current to the network and acting like a source and the

other supplying negative current and acting like a sink. Care must

be takerJ here not to confuse the direction of current flow with the

sense of directior_ of the dependence relationships of the elements

yg and -yg. Each originates at the control vertex to preserve these

relationships _ecessitated by the network structure. All this is

show1_ in fig_ire 7,

The same linear graph as shown for Mason's technique in

figure 6 applies to this model:

V°

In

m m

w

V
O

Figure 7.

Transformed Version of the Example Network.
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The next step in evaluating the determinant of the node

admittance matrix is to consider the partial graph with all directed!

edges removed. This is shown in figure 8 and the trees of this

graph produce some of the terms in the expansion of the determi-

nant corresponding to the loopwoods of order zero expressed in
.NathanSs terminology as:

(o)
L =

(k)
K Tree admittance

products of modified )

graph without direc- ]

ted edges J.

Y3

m

Y5

r

Figure 8.

Partial Graph of Figure 7.
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The trees are:

735 15_i 245 345

i36 Z35 246 346

]46 236 256 356.

'l_h_ 1",c:xtand son_ewh.--,..tmore colr_plex step is to find all loops

taken one at a'r.ir_e and evaluate the loop trees or directed trees

'which terminate on these loops° One such directed loop tree

having the reference vertex as its reference is:

Yg

WV

Y3

Y5

m.
i

r

If it were not for the allowable loop, this would be a 2-tree, with

the reference vertex in one part and all other vertices in the other

part.

Similarly, the other first order loop trees are found as shown on

the next page.
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Taken together these are the first order loopwoods and the terrr_s

produced are:

Loopwood

of the = -_-'* L(1)-

1st order _ (k)
k

Yg Y3 Y5 " Yg Y3 Y5

" Yg Y3 Y6 "

" Yg Y3 Y6

And, since there are no second order loopwoods, the procedure

terminates therefore;

A "- Yl Y3 Y5 + Yl Y3 Y6 + Yl Y4 Y5 + Yl Y4 Y6

+ Yl Y5 Y6 + Y2 Y3 Y5 + Y2 Y3 Y6 + Y2 Y4 Y5

+ Y2 Y4 Y6 + Y2 Y5 Y6 + Y3 Y4 Y5 + Y3 Y4 Y6

+ Y3 Y5 Y6 " Yg Y3 Y6"
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It requir<:s a grr_a-;;deal of care to perform these computa-

L._o_s}_y hand! bu_, alter much practice the method could be found

helpf,_lo 11:4oe:_ h_,c _Le advantage of producing factored form

results but fo_ _;,_mputcr analysis, it seems unduly weighted with

allverse procedures and sub-procedures. Amore direct method

is much to 'b_ pr_.forred.
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'fOP()LOGICAL ANALYSIS OF GENERAL NETWORKS BY THE MET]IOD.

0]_ /_. TALBOT.

Fall)ot has proposed a mixed method of analysis, partly algebr.tu

and partly topological. The algebraic portion starts with the develop-

ment of the edge admittance or impedance matrix which, in general,

is :ao_ diagonal. This matrix is rearranged in such a way that all the

:aecessary relationships between coupled elements of non-reciprocal _,::_s

are <xpressed as sub-determinants of low orderusually 2 x 2falling on lhe

_nain diagonal. From the sub-determinants, selection criteria for

deter_Y, ining the admissibility of terms computed from the trees of the

network is derived. The topological aspects of the method depend

essentially on evaluating trees of the network and signs of the terms

represented by admissible trees, from the point of view of computer

aided analysis, the method is cumbersome because many different

procedures, including those for manipulating matrices, are required

and the essential benefits of simplicity of the topological technique hay,'

Been sacrificed.

Procedure.

I. Transform all unilateral or active elements to square matrix

admittance parameter representation.

II. Form the network Branch matrix in such a way that all passive

elements are single uncoupled elements entered on the main

diagonal and active or unilateral elements consisting of square

matrices are entered on the main diagonal. (It may be required

to change edge order to accomplish this.) The resultant matrix

should have the form shown on the next page.
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i .!J°
O

<)
where some of the _Yk_ (whele k

"F']
@

0
@

= 1, 2, . . . )maybematrices of

low order and others may be single entries representing individual elen_cn; s.

III. Form a selection table from the branch matrix showing all pos-

sible combinations of parameters Y1 ' Y2' " " " and compute

the determinants pertinent to each of these combinations. These

determinants will form admittance products for the elements or

coupled networks.

IV • Draw a linear graph of the network from the entries in the branch

matrix.

V. Compute all trees of the graph.

VI. Form a selection table listing all possible combinations of trees

taken 2 at a time and corresponding to entries in rows and col-

umns respectively of the branch matrix. Each combination real-

ized produces a set of elements identifying a tree admittance

product. Admittance parameters from III can be back substituted

at this point.
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VII °

VIII.

CoJ_,F,_I ':;_;ign 1:e_-r_-,Fo1" each ad1_ittance product according to

Sect_,oT_ V }3. 175-179 of Talbot's paper _7] .

Col-nput_. ciet_rn:_i;:_antof the network as:

K
aI] f:_-ees

Tree admittance products_.

Z_ For cofartors of the node determinant, a new edge matrix must

be forr_ed and a new graph corresponding to this matrix must

also_oe formed. The process of computing follows steps IIthrough

VIIL

Because this method is not entirely topological and rela-

tively u_.suitcd to computer analysis, no example will be given

here but, tb.e interested reader is referred to Talbot's paper [7]

where a numbel of good examples are given.

-37-



TOPOLOGICAL ANALYSIS OF GE]_iERAL NETWORKS BY THE M]tTIIOI)

OF M. T. JONG AND G. W. ZOBRIST.

Jong and Zobrist have proposed an extension to the methods of Mayed _ a _<i

Coates with some basic differences in approach. The main differences

are that only one network graph is required, not two, and higher order

trees must be computed where the networks contain active or non-recip-

rocal elements. Using just one graph is a definite advantage but find-

ing the higher order trees in a systematic and efficient manner is a

problem yet to be solved. At the time of this writing, Jong has devel-

oped the method fairly well for non-reciprocal elements in the form of

transadmittances, but the extension to networks containing more than

one dependent voltage source has _ot yet been done. This is no funda-

mental limitation but it impedes the process of evaluation.

Considering networks with ordy transadmittance elements and

bilateral elements, the computation of the determinant of the node admittance

matrix by the method of Jong and Zobrist starts by forming all the tree admitta uce

products ofthe passive sub-graph. Then higher order trees are obtained to

express those relationships caused by the transadmittances. The following pro-

cedure will be illustrated with the aid of the example network of figure 9.

Procedure.

I. To find the determinant of the node admittance matrix, first sep-

arate the network into active and passive sub-networks N and
a

N as shown in figure I0.
P

II. Generate the linear graph G of the passive network N
P P

in figure II.

as shown

ILI. Compute the trees of the passive sub-network.
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i = Y5 V ] Dependent Current
Generator

C

O

Figure 9.

Example Network.

N
a

b
a) Active sub-network.

C

@

b) Passive sub-network.

O

Figure 10.

Ac,:ve and Passive Sub-Networks for the Example.
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1

\

/

j •

ref.

G
P

Figure 1 I.

Graph of the Passive Sub-Network.

@

For our example, the trees of N P

edge numbers as follows:

are found by permuting

-I- -2_- _ -

i 2 4

I 3 4

2 3 4

Ckt

From these, the first set of terms in the expansion of A is

produced:

To = Yl Y2 Y4 + Yl Y3 Y4 + Y2 Y3 Y4
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IV. We now proceed to i:indthe next higher order k-trees which in

this case is the: ,;,:tof _ -_-tree,', where w:.rlices are separated in a

special way as il_,:_:,tratedhcr_ for k .-_. '-o

To find T 1 (tl_e set of 2 trees required) it is necessary to

separate the graph G into controlling vertices and controlled
P

vertices of the transadrr_ittance elements:

k = ÷

controlling vertex

controlling vertex

controlled vertex

controlled vertex

Then, we find sets of 2-trees _Jth controlling vertices separated

and also with controlled vertices separated and take the inter-

section of these two sets to produce the required higher order

set. VIZ:

T 1
= T2 _ T2 •

_, j k, 1

T z is found by identifying the vertices of the graph G
i, j P

computing as shown in figure 12.

and

The 2 trees T2. and T Z
1, j k, 1

shown on the following pages.

are found from the modified graphs
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2
/J

! /

/"

1

/

(a)

ID
,/

/
/f

k

\ /
i,j

(b)

--> Y2 Y4 + Y3 Y4

= T2.
1, j

i k, 12

4

Yl Y2 + Yl Y3 +Yl Y4

+ Y2 Y3 + Y2 Y4

= T2k, 1

(c)

(a)

(b)

(c)

Figure 12.

Controlling Vertices ij and Controlled Vertices kl of the Graph G.

2-Tree Products Produced by Identifying i with jo

2-Trees Products Produced by Identifying kwith i.
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and,

T 1 =
i- "1 r-

/Y2 Y4 +Y3 Y41(_ lYl Y2 +Yl Y3 +Yl Y4
I.._

Y2 Y4 "

+Y2 Y3 +y2 Y4_

V.

VI.

Note: In this step, it was necessary to eliminate five unneces-

sary 2-trees - awasteful effort.

If there were more transadmittance elements, higher order sets

of k-trees would be required. However, for the example k = 1

and the 2-trees terminate the search. Vertex separation for

higher order trees is more complex and the interested reader is

referred to the paper of Jong and Zobrist for clarification on this point.

A is found by summing all tree admittance products thus pro-

duced according to the formulation following on the next page:
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A ._

where:

+ E

Tr
T o .-t . ym r

r = 1

IZ 123

Yml Ym2 T + Yml Ym2 Ym3 T

12. V
+" + YmI Yrhz "

Ymr T

Y
mr

Z °

m r

The rth transadmittance element.

Sum of all tree admittance products of the g rapl_ G .
P

Sum of all 2-tree admittance products

separating the network N into two parts.
P

On containing the + and - input vertices.

The other containing the + and - output

vertices of the rth transadmittance element.

Trl, r2 Higher order tree

explained in text.

admittance products as

For our example,

A ._

this is simply:

T ° + T 1

Yl Y2 Y4 +YI Y3 Y4 +Y2 Y3 Y4 +Y2 Y4 Y5"
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The; co_:O,],; xily of computing higher order k-trees incrc_._es

very rapJcJ];-_ ;i_c. rmmber of unilateral elements is increased.

'I'hi_-: is _;hov_l, _:'_rlatically by computing the number of sets o:

higYJ,:,:r order' i:re, :, as a function of k as shown in table 1.

It is c)e;_r _}_at for an active network with four or more

generai;ors, I:]_ecost of computing k + i tree admittance pro-

ducts co1_z,_deri_ _ I:i_atall N (k) sets required would be prohibitive.

Man3; o_ I-}_e:_c,:or,_binations may produce zero terms. This is

evidence oS the 'i,_cI:that some efficiencies in the computing pro-

cess are po'_sibi_. The method in general has promise but also

some dJffic_dtJes, the greatest of which seems to be the difficulty

of finding the higi_cr order k-trees where vertices are separated

into many dffferen! required arrangements. When this problem is

solved, it _z_ay b<- possible to make good use of the technique for

computer app!ica_Aon but at the present time and for this reason, _I

is not suitable.

Table I.

Number of Sets of k-Trees as a Function of k.

k N (k)

1 l

2 4

3 24

4 192

5 1920

6 23040
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COhlPARISON OF THE METHODS OF GENERAL TOPOLOGICAL

A>_ALYSIS DISCUSSED ABOVE.

Each of the methods of topological analysis can be divided into

three broad task areas involving first, formation of a mathematical

model; second, generation of a linear graph, and third, determination

of admittance parameters. Each differs from the others in some if _ot

all of these categories. Model formation starts with the initial net_vork

to be solved and consists of reducing the network to a form wherein each

element can be represented by an edge of the corresponding linear graph. The

linear graph is thenderived and the required network functions are determined

from the graph by some systematic method. Onthebasisof these categories,

a comparison between methods will be attempted.

It would, of course, be desirable to avoid the necessity for trans-

forming a network into a form suitable for generating a linear graph

but unfortunately no one has as yet come up with a satisfactory methor_

to do this; furthermore it is conceptually not possible to relate the

required information from a dependent source to linear graph form

without adding an element not usually found in the schematic of a net-

work, namely that element required to show the dependency relation-

ship. The easiest method of establishing this dependency relationship

seems to be to use the transadmittance element or voltage controlled

current generator with the controlling voltage existing at one of the ter-

minals of the current generator. Mason has adopted this approach but

has also included a redundant method using the Gyristor. Since any

unilateral element can be formed using the transadmittance ele-

ment alone, and since transadmittance has a simple physical signifi-

cance, it seems unnecessary to include the Gyristor as a special case.

The method of using small matricies to describe unilateral elements

as done by Talbot and Brown is comparitively cumbersome.

-46-
i



The dual voltage and current _raphs of Mayeda and of Coates contain

a great amount of redundancy. Here each bilateral element is repre-

sented by two edges. Even though Chen's method uses a single grap]_,

his graph still contains two edges for each bilateral element. By far

the simplest graph structure is d n_t proposed by both Mason and Nathan

using undirected single edges for passive elements. Although the graph

structure proposed by Brown is relatively simple, each edge is direc-

ted and it is necessary to keep account of direction in determining

admittance parameters. In the ne×t section, we will develop a method

using partly oriented graphs sin lilar to those of Mason and Nathan.

All topological methods reviewed in this paper make use of the

concept of a "tree" of some kind. Starting with the methods of Mayeda

and Coates, the concept of common tree was introduced. This concept

was greatly simplified by the directed tree of Chen. Nathan defines

loop-trees and complicates the picture unnecessarily. Since all of

these methods use "trees" or loop trees in determining admittance

parameters, it would seem that the simplest tree-finding algorithm

should be the most effective. In addition to trees, Talbot and Brown

find it necessary to include non-topological data formed from the matrix

equivalents of unilateral elements in the computation of admit-

tance parameters and consequently produce answers at the expense of

considerable additional computational labor. Jong and Zobristhave suggested

the use of sets of k + 1 trees, finding such tree sets is as yet a partly

unsolved problem.

Inherent in the computation of admittance parameters is the

problem of determining sign. The complexity of sign determination

seems to be directly related to the complexity of the tree structure

recognized by each method. Chen has provided methods where the

sign determination is made directly from the tree admittance products.

Brown claims that no sign problem exists, but if one investigates the

accounting of edge orientation required in determining the admittance
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pazc, t;,,._,,:_::< f.o7 .-:ouple:l ,...[emenl:s;, one can recognize all the symptoms.

Ta11:,_)<'._.. :si%n i,t oi_ien, Js not as ccrmplex but still requires the compa-

riso_ cY oc;,._>;_ don o.{tree pal,-,,

Takel_ ;,!t,'Jgctlher; it wo{.i!.d oeem that the best features of all meth-

ods discusse3 -,.bore sho_ild be synthesized into a simple topological

technique tL_t requires the lea_;t a.mount of effort to use and affords the

greatest ir_s.ight 5nto the a.nalys5>; problem. This method would use

simple_t ]::oss_ble transadrnittamce formation concepts, the partly ori-

ented gr-_p]_ :_*ructure proposed _>y Nathan and Mason, and the simplest

possil_l,.: ;_ct-_:-i_i _ance parameter determination methods of ordianary

passive _,etwor]- ;_natysSs. Suc]-, a method is proposed in the next section.
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DEVELOPMENT OF A NEW METHOD FOR TOPOLOGICAL ANAL¥SL_

OF LINEAR ACTIVE NETWORKS.

Nathan [6] and Mason [3] have proposed methods of topological

analysis which have some similar recommending features. Each uses

a partly oriented graph and each avoids the difficulty of computing the

sign terms in the expansion of determinants. The method outlined here

is related to each of the methods discussed earlier but owes more to

Mason and Nathan than to the others. It will be shown that this method

is a specialization of the method of Mayeda [I] retaining all the gen-

erality required to analyze any linear active network. This is pos-

sible because, however elegant Mayeda's method may be, it contains

redundant graph elements and redundant sign terms. The procedure

for this method is very simple starting with network modeling, contin-

uing with generation of a graph, and concluding with the topological

determination of network determinants and cofactors as shorn below

for nodal analysis.

Procedure.

S_ep lo

Model all dependent elements by using one or a combination

of transadmittance elements (a transadmittance element is a vol-

tage controlled current source with the independent "+" voltage

terminal attached to the current source and the "-" voltage ter-

minal attached to the reference or ground terminal). If a depend-

ent voltage generator is encountered it will be necessary to obtain

the norton equivalent before transformation to transadrnittance

form. Any transadrnittance directed from a vertex to the refer-

ence vertex must be replaced by a bilateral edge of the same

value. Justification for this operation will be given later.
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Ste_ 2.

Form a partly oriented graph of the trr_nsformed networ_

using undirected edges to represent b_]ater;d elements and dir-

ected edges to represent unilateral elen_ents.

Ste_ 3o

To compute £_, the determinant of the network, find all

directed trees of the partly ,_riented graph of the network and

from these, compute the sun_ of the directed tree admittance

prod ucts.

To conqpute cofactors of the node admittance matrix, find

all directed 2-trees of the partly oriented graph of the network

and from these, compute the smr_ of the directed 2-tree admit-

tance products.

A dual procedure is possible for loop analysis using the

transimpedance unilateral element model to compute the deter-

minant of the loop impedance matrix and its cofactors° However,

we will illustrate the method only for nodal analysis because it is

relatively easy to transform from one to the other.

Mathematic al Development.

Before we can build the mathematical foundation to support this

new method of topological analysis of general linear networks, it is necessary

to define certain terms, most of which have already been defined else-

where but are repeated here for clarity. Some new terminology, how-

ever, is needed to express several new concepts necessary in the

d evelopme nt.
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Definition s,

1° e,.l_ A line segment with two endpoints used

to topologically represent a mathemat-

ical or physical relationship.

1 a. undirected edge Any edge which graphically represents

a bilateral mathematical or physical

quantity. In such an edge, no distinc-

tion is made between either of the two

endpoints.

1 b. directed edg_e Any edge which graphically represents

a unilateral mathematical or physical

quantity. A directed line segment is

used to represent directed edge and a

distinction is made between the vertex

of departure and the vertex of arrival of

such an edge.

I C. controlling edge An edge of a control graph, graphically

representing the voltage control function

for a transadmittance.

Z. vertex An endpoint of an edge.

2 a. vertex of departure The vertex nearest the tail end of a

directed edge.

2 b. vertex of arrival The vertex nearest the head end of a

directed edge.
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2 Co :-eference vertex A selected vertex within a graph, which

has been selected as datum.

2d. ext re1_ne vertex Any vertex within a graph, which has one

and only one edge attached to it.

A vertex of degree i.

. tran sad mitt anc e A mathematical model of a voltage con-

trolled current generator represented

topologically by directed edge wherein

current is thought to flow in an amount

proportional to the voltage that exists at

the vertex of departure of that edge.

p graph or linear graph An ensemble of edges which, if con-

nected, are connected at vertices only.

4 a. undirected graph A graph wherein all edges are undirected

4 b. directed graph A graph wherein all edges are directed.

4 c. partly directed graph A graph wherein the edges are either

directed or undirected or combinations

of both.

5. subgraph A graph which lacks one or more edges

of the graph to which it is related.

6. control graph For every partly directed graph, one

control graph exists to graphically

model the control relationships of trans-

admittances within the original graph.
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TLis control graph is formed by first

re_!acing every undirected edge with

t_w_oppositely directed edges between
I._ same terminals. Then, the head

emc]of each directed edge within the

graph is disconnected and subsequently
reconnected to a chosen reference ver-

tex. The control graph is therefore a

directed star graph where all edges are
directed toward the reference vertex.

o directed path A sequence of edges which are connected

in such a manner that all edges are

directed in the same way and that all the

vertices involved are of degree two

except the initial and the terminal ver-

tices which are of degree one.

8_ tree A circuitless connected, subgraph which

contains all the vertices of a graph.

o directed tree A tree of a partly directed graph where-

in all paths between extreme vertices and

a reference vertex are directed paths

terminating on the reference vertex.
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Tran_zadn_Jll _,c,, N4,- L,_!,

It is t],,orcti_ _]L; t_ossible to model any real electrical network

,ising the tray_Jadm%ita,,_.c rmodel alone although for many reasons it may

not be d_siraLle tr_ Jo so. We will, however, make this assumption that

for nodal analysis, we can reduce any unilateral or bilateral element to

an equivalent trans_d_zittance model. Figure 13 shows the ordinary

network mode0 of a /oltage controlled current generator along with the

associated trzln'sadr_i_tance r_odel. Here it can be seen that two ori-

ented edges ar_ req'_ired to show the source and sink nodes of the cur-

rent generato_ with their relationship to the control vertex a_ the point

+
V

a

b

a
a +yg b '

-Yg
i =

-Yg

, Yg

C r C r c

Ordinary Net-

work Model.
T rans admitt anc e Mayed a- C oate s

Model. Model.

(a) (b) (c)

Figure 13.

Model of a Transadmittance Element
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at which the control voltage v is applied. Also shown is the earlier
a

a,_d son_ewhat redundant Mayeda-Coates model indicating the current

and voltage graphs superimposed.

A bilateral element such as a resistor or capacitor can be modeled

as shown in figure 14 using transadmittance alone. However it is not

necessary because of symmetry to use two directed edges. Only one

undirected edge is required to express all the necessary and sufficient

information required for analysis purposes.

Transformers and many other practical networks can be modeled

by combinations of unilateral and bilateral elements but the details will

not be taken up here.

Using the transadmittance model_ we can represent practical net-

works with a combination of oriented and non-oriented edges such that

a b
Y Y Y

a

0

/

r

0
r r r

_'- _-----_----_" M-- ____------_ K_ ____.__.___.j

Ordinary Net- Transadmit- Mayeda-G oates
work Model. tance Model Model,

using directed

(a) Edges, (b) (c)

Figure 14.

Models of a Bilateral Element.
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the essential and none of the nonessential information is conveyed. We

shall now show how a partly rJi_ected graph of a network can be formed

and used to solve for the determi_ant of the node admittance matrix and

its cofactors lout first, we shall formally demonstrate that the partly

directed graph model is justified.

Establishing a Relationship Between a Directed Graph and a Partly

Directed Graph.

Let us start by considering the following kind of network with its

descriptors.

Given: 1. A network N containing unilateral and bilateral

elements.

2. A transadmittance model M of the network.

Theorem I :

Proof:

o A directed graph G d of the transadmittance model IVL

(All edges of G d are directed. )

. A partly directed graph G of the model Mwhere all

passive elements are represented by undirected

edges and all active elements by directed edges.

G d and G are topological equivalent in the following

way. All incidence relationships necessary and sufficient

to describe the network are preserved in a transformation

from G d to G. Also, the rank and nullity of G d is equal to

the rank and nullity of G.

The graph of a transadmittance model of a bilateral

element using oriented edges is redundant. This is so

because the t_vo directed edges of the graph (refer to
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iigur(_ i._):_r._id _Laticalexcept for direction which can

ij_i_.i,_,h-_,J_!,,,,__'_hout loss of generality. Repre-

: ._I:i_,,: :i:i': _-,[_i: by one undirected edge simplifies

:c _:,_x-_:;:_:_,_ o_:d preserves the necessary incidence

,. ]ati o:_,'::hip ,;.

The incidence matrix A representing G contains

one: co]_.nn fc_r each passivebilaterai element and

_;b_ incident, _ _-aatrix A d representing G d contains two

zolumnb_ iden_:i,_al except for sign, for each passive

!_ilatcral elc_ent. A and A d are otherwise identical

and it follow:: that the rank of each is the same because

by elementary operations performed on the columns of

Ad_ A canbc formed. It also follows that the nullity

is the sa._e because all vertices connected by directed

edges ir_ A d are connected by nonoriented edges in A.

Computing & from the Partly Directed Graph.

In order to prove that we can compute the determinant of the node

admittance n_atrix from the directed trees of this partly directed graph,

we will. first recall a relationship developed by Mayeda and Coates as

follow s :

whe re

A.
i

and

Y

Y = A. Y A t (l)
n 1 v

the incidence matrix of the current graph which, in the

case of an oriented graph of an exclusively transadmit-

tance model, is the incidence matrix of the graph itself.

the diagonal edge transadmittance matrix where uni-

lateral as well as bilateral elements appear onlyon the

main diagonal
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and

A
v

the incidence matrix of the voltage graph which in the

case of an exclusively transadmittance model is the

incidence matrix of the control graph.

Consider the relationship between transadmittance models of a net-

work together with the Mayeda-Coates models containing voltage and cur-

rent generators as shown in figures 13 and 14. There is a 1 to 1 cor-

respondence between the elements of the transadmittance models and the

current generators of the Mayeda-Coates models. This allows us to

equate A; the incidence matrix of the current graph in equation (i) with

A the incidence matrix of the directed graph of the transadmittance

model. Transforming the transadmittance model into its control graph

in the manner indicated in definition 6, page we produce a graph which

is identical to the voltage graph of the Mayeda-Coates Model, therefore,

A the incidence matrix of the control graph of a transadmittance
c, r

model is identical to A the incidence matrix of the voltage graph of the
v

Mayeda-Coates model and we can specialize equation (i) to the case of

the directed graph according to equation (2). This result is also appli-

cable to the partly directed graph according to theorem I.

Y = A Y A t (2)
n e c, r

whe re
J

a..

:J
= incidence matrix of the partly directed" graph.

-58-



whe re

A

a°°

Ij

l]

: incidence, matrix. <_,fthe partly directed graph.

/ ......-i foJ: each undirected edge ,]contacting the ith vertex

or each directed edge i departing from the ith vertex.

J

+I for each directed edge j directed toward the ith

vertex.

0 otherwise°

Y
e

diagonal edge admittance matrix which may contain any

number of transadmittance elements.

A
C_ r

the incidence matrix of tile control graph of G with

reference vertex r. The justification for this special-

ization is according to theorem I.

By the Binnet-Cauchy theorem, we know that Det Yn

the products of corresponding majors of A Y and Ae c, r"

is the sum of

Det Y =
n

broducts of corresponding

_majors of A Y and A t
"_ e Cjy

(3)
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_.t_:_,n_c:.e_sily ,_[_,,:.,,_th,! ._ng nonsingular major of A Y cor-
e

:,:esp_"!_:. _:o ;_ trc:,:: of cL {S_: :-'_._hu and Reed 10 Theorem 4-10. )

_ ,.:,z:ijj._J_o b.c.show'r_ ii,at _-,_ _o_,;-_ingular major of A corresponds
C_ r

to _ Lr_3. of tl_e orixin_:_l _f _L,j_h_ (i_rected toward the reference vertex.

This f.r:_ ,rill be proved sub_cq,_ently in theorem 2 but for now consider

the ;_ignifi, ance of thc_¢: t_vo theorems. We now have a way of uniquely

ldc.ntil_:_R .atl the terrn:_ :m the expansion of the determiant of the node

;_drr_ittaa¢:e j_atrix of a no c_r_:cip_'ocal network. Each term corresponds

to a tr_z.c: _oreover, each t;er_ ,corresponds to a directed tree which _nay

contaix_ any number of bilateral elements. All this produces the desired

result without 1Jte cancell_ *_ons ordinarily encountered in loop and node

analysis by matrix methods. Not all cancelations are avoided because

each active element produces -_ome terms which must be canceled but the

ordinary cancelations resulting from passive elements are avoided thus

reducing co_'nputationat effort. The method improves on the Mayeda-

Coates method by being more direct. That is, the determinant of the

node admittance matrix is produced immediately as directed trees of a

partly directed graph. The Mayeda-Coates method requires computing

all trees for two graphs of approximately the some complexity, the vol-

rage graph and the current graph, and then eliminating all but the com-

mon trees. Such a process contains needless redundant effort.

Proof That a Nonsingular Submatrix of a Control Graph can be Related

to a Directed Tree of a Partly Oriented Graph.

We shall now formally show the importance of the control graph in

determining acceptable directed trees.

Given: i° A partly directed graph G with v vertices and e edges.

2. Atree T of the partly directed graph.

m A control graph G with reference vertex r and
C_ r

incidence matrix A related to the partly directed
C_ r

graph G in the following ways:
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ao r is a vertex in G.

b. All edges terminate on the reference vertex r.

Co One edge originates on every departure vertex

of directed edges in G.

do One edge originates on each of the two vertices

of an undirected edge in G.

Theorem 2:

. A subgraph G of G and its incidence matrix
Ct, r c, r

Act, r corresponding to a tree T in G.

Act, r is nonsingular if and only if all edges in T lie

in a path directed toward r.

Proof:
For the rank of Act, r to be V-1 which is to say for

Act, r to be nonsingular, it must be possible to associate

one unique controlling edge of Gct' r with every vertex in

T. This is so because there are only V-1 vertices distinct

from r and if each of these vertices were not represented

uniquely, one of the following intolerable conditions would

occurr:

i. The vertex would have no controlling edge associated

with it. This results in a row of zeros in Act, r and

therefore the rank of Act , r < V-l and Act , r is

singular.

go The vertex would have a controlling edge which is not

unique. This leads to t_vo identical rows in Act , r

which are linearly dependent, hence the rank < V-l

and Act , r is singular.
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Consider any <]ir_,ct¢_d p/_t|_ _r: '] ;i;:t rl. ir,_ with an extreme vertex. If the

edge attached to this v.'.l_tcx is or]er, t,_.,q av.,a 7 from the rest of the graph,

it is not possible I:o :tssociat_ :_ centz'_,i!linu edge in Oct, r with it an(]

condition "a" exists therefore A is singular.
C [:_ t

If the edge attached to the extreme vertex is oriented toward the

reference vertex r or if the edge is undirected, it is possible to assoc-

late a controlling edge with this vertex and Act , r may be nonsingular.

Let us continue step by step down the chosen path toward the ref-

erence vertex. We shall show with the aid of figure 15 that if we meet

an edge directed away from the reference vertex, the path is not avalid

directed path according to the definition 7, page and hence will not

produce terms in A. The 2 possible ways we can encounter an edge

directed away from vertex r are shown in case 1 and case 2 of figure 15.

In case 1, edge a is bilateral and its control graph produces two control

edges at vertices 2 and 3. That control edge between vertex 2 and the

reference vertex is redundant also no other control edge is associated

with this vertex and condition 2 exists. The incidence matrix of such a

controi graph is therefore singular. In case 2, no control edge is pos-

sible connecting vertex 2 with the reference vertex and condition 4 exists

therefore the incidence matrix of the control graph is again singular.

From this it is apparent that the only acceptable condition for

Act, r to be nonsingular is for all directed edges in the path to be

directed toward the reference vertex. Since the entire tree T can be

decomposed into paths from extreme vertices toward the reference

vertex (some edges may appear in more than one path), all directed

edges in the tree must lie in a path directed toward the reference ver-

texif Ac% r is to be nonsingularo Conversely, if alldirected edges

of a tree of a partly directed graph lie in a path directed toward the
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A Path and Its Control Graph.
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reference vertex, Get ' r the graph of controlling edges associated with

that tree is nonsingular because it is possible to associate at least one

unique controlling edge with each vertex.

Example of the Computation of _ by Trees of the Partly Directed Graph.

Let us now consider a sinlple example of the method. Using the

network of figure 16_ let it be required to find the detern_inant of the

node admittance matrix.

Our first task is to draw the partly oriented graph of the network

as shown in figure 17. The directed trees of the partly directed graph

are found to be:

1 2 4 2 4 5

1 3 4 -3- -4- - _ -

2 3 4 -_- -4- - _ -

a

i = Y 5 v I

C

Figure 16.

Example Network.
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\

5

4

Y6 = "Y5

r

Figure 17.

Graph of the Example Network.

Because Y6 is equal in magnitude to but opposite in sign from Y5'

last two trees represent terms that cancel and we have:

A = ¥I Y2 Y4 + Y1 Y3 Y4 + Y2 Y3 Y4 + Y2 Y4 YS"

the

Determinin_ the Admittance Matrix from the Partly Directed Graph.

It is possible to compute the node admittance matrix as follows:

Ste_ 1.

Form the incidence matrix A of the partly directed graph

in the manner shown earlier.
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S_e_o

Form the incidence matrix A d of the equivalent directed

graph in the following vcay:

For every column in A in which two +Its appear, change

one sign to -I for either entry. This corresponds to an arbitrary

assignment of edge orientation for bilateral elements. The

resultant matrix A d could have been obtained from a directed

graph equivalent; however, this process eliminates the need for

redrawing the graph.

Step 31

!

Form the unilateral edge selection matrix A

directed graph in the following way:

!

A =
aij

wher e
I

a.. = a.. for bilateral edges.
ij ij

from the partly

a,.

ij
1 for any unilateral edge j departing from vertex i.

!

a.. = 0 otherwise.
13

S_ep 4.

Form the diagonal edge admittance matrix Y
e

admittance elements as follows:

including all

e nY .._ where y ejj is the adn_ittance of each edge j,

dJi3s-the (j, j)th element of Y .
e
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T1,._, _,c,d,; 3d;,_}tl:a_-Jce matrix is now found according to the

it

Y = A d Y A on e

!

A =

y

e

and,

F ji i 0 0 I i
0 -i I 0 0 -

|0 0 0 I -1

1 1 0 0 1 1

0 -1 1 0 0

0 0 0 1 0

_ o

Y2

Y
n

Y3

I Y I Y2 0 0 Y5 -iSl
0 -Y2 Y3 0 0 5

0 0 0 Y4 -Y5

Y4

Y
n

w

(Yl + Y2) "Yz

(-Y2 + Y5 ) (Y2 + Y3 )

-Y5 0

-67 -
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Y6

J

-1

1

0

0

1

1

0

0

Y4
I

-1

-1

1

0

0

0

_

0

0

1

0

0



Corp.puting Cofactors from the Partly Oriented Graph.

In the previous sections, we have seen how the node admittance

;natrix and its determinant can be derived from the partly directed

graph. The process of computing cofactors is more complex but

still follows the same basic idea, that is, the algebraic expressions

representing the incidence matrices of a graph are combined with the

edge admittance matrix in such a way as to form the desired cofactors.

Then, it is shown how these expressions bear a one-to-one correspon-

dence with the directed 2-trees of the partly directed graph. Starting

with the definition of a cofactor, we have:

A.. - --(-l}i ÷j M..
U U

where A..
U

the (i, j)th cofactor of det Y
n

Mo

12
the (i, j)th major of det Y .

n

and M.. can be related to the incidence matrices of the original network
13

as follows :

whe re

A .
-1

Mij = A.i Y A t• e (c, r)-j

the incidence matrix of G with row i deleted

Y
e

the edge admittance matrix

A(c, r) - j the incidence matrix of the control graph G
Cs

with row j deleted.

r

Again, by the Binet-Cauchy Theorem, we can relate Mij to the product

of corresponding nonsingular n_ajors of A i Y ande A(c, r) t- j"

=\_ (Products of corresponding nonsingular Z
Mij -L._..,_ majors of A.i Ye and A{c ' r)t_ j J.
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Proceeding one step further, we know that all nonsingular majors

of A i Y correspond to 2-tre_.s of the original graph G with vertex i ine

one part and the reference vertex in the other part. We can arrive at

this conclusion by investigat%ng the topological significance of A i Y .e

The deletion of row i can be directly related to the removal of vertex i

in G to form G_io This is done by identifying this vertex with the refer-

ence vertex. Now, all nonsingular majors ofA . Y correspond to the

tree of G . or the 2-trees of G. (See SeshuandReed Theorems 4-10 and

7-3 El0].) Altogether, we have shown nothing verynewor spectacular

but the next step is new and represents a significant departure from the

conventional te chnique.

It can be shown that the nonsingular majors of A(c ' r) -j cor-

responding to the trees of G_i have a one-to-one relationship with the

directed 2-trees of the partly directed graph with vertices i and j in

one part and j being the reference vertex for that part also vertex r in

the other part and remaining the reference vertex for that part. It can

be seen from this that every directed 2-tree of the partly oriented graph

has two reference vertices.

The proof for this depends on theorem 2 in the following way:

A(c, r) - j is the incidence matrix of the control graph for Gw j"the

modified graph where vertex j is identified with the reference vertex.

Since the only majors of A(c ' r) - j that will produce a nonzero result

correspond toatreeG., we need only consider majors from a matrix of the fol-
-1

lowing type: A(ct, r)-j" By theorem 2, we know that all nonsingular

majors of this type correspond to directed trees of O . which can be
-J

interpreted as directed 2-trees of G with vertex j in one part and the

reference vertex r in the other part. Since these 2-trees must also

correspond to a tree of G_i, or 2-trees with vertex i in one part and

the reference vertex in the other part, each must contain both vertices i

and j in one part and the reference vertex in the other. This can be

expressed in the algebra of sets as follows:
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T2 = -_'2. n T2.
lj r 3_ r

= the set. of 2-trees which we seek.

the aet of 2-trees with vertex i in one part and

vertex r in the other.

We can divide these set of 2-trees into two parts each: namely

those which contain vertices _ and j in one part and those which do not.

This is so because all vertices including i and j must be represented in

one part or the other part of a 2,,tree set. Clarifying this identity we

have for example:

T2. = T2." + T2.
i, r 13, r i, jr

which says in words:

The set of 2-trees

with vertex i in one

part and vertex r in

the other.

The subset of 2-

trees with vertices

= i and j in one part +

and vertex r in the

oth e r o

The subset of 2-

trees with vertex i

in one part and

vertices j and r in

the other.

also,

T2. = T2." + T2.
3, r 13, r 3, ir
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and it follows by taking the intersection of these two sets:

T 2 = (r2." + T2. ) (T2." + T2.
1j, r I, jr 1j, r j, ir

T 2 = T2."
ijp ro

We know now what classes of 2-trees represent the nonsingular

majors of Y and now we are free to explore the topological significance
n

of these. Recalling that the 2-trees were originally found by identi-

fying a vertex j with the reference vertex in G .; further recalling that
-3

they correspond to trees of G j, we depend on theorem 2 which deals

with only directed trees with vertex r as the reference. By understand-

ing how G . was developed, we can now reverse the process and extract
-3

the jth vertex from the reference vertex to see the significance of the

sense of direction for directed paths in each of the two parts of the two-

tree. All valid parts of the 2-tree are in themselves directed trees

terminating either on vertex j or vertex r and we have:

where W..
13,

Z_.. = (-I) i + j W..
13 13 , r

.[ • , ;'

the sum of all '2-tree admittance products with

i and j in one part, j serving as reference for

that part; and r in the other part also serving as

a reference for that part.

Example of the Computation of Cofactors.

As in illustration of the method, let us consider the entire set of

cofactors for the example of figure 16. The directed 2-trees of the

graph G with respect to all cofactors are given in table 2.

-71-



T ".. able 2.

Directed Z-Trees of the gxan_loI,' .bTetwork.

W11,

W

W

12,

13, r

r

n

r

+

1 2 3

• ................@ /_

/

Y2 Y4

A

-Y2 Y4

i 2

G

Y3

6

Y4

3

"Y4 Y6

13
@

Y2 Y5 Y3 Y5

-72-



T___ble2 (Continued).

Directed 2.-Trec_ of the Example Network.

W2i_ :r "

......... -_--.I
t

W22, r t'fi

W22 ' r :

(C on't)

@

2

-Y2 Y4

Yl Y4

+

6

Y4 Y6

A

v

2

Y2

Y4 Y5
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Table 2 (Continued).

Directed 2oTrees of the Example Net_work.

I

! @

i -Y2 Y5

W31, r
+

m

None

None
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TabJ_: 2 (Co_-_inucd).

Directed 2-Tree_ of [he [;xan_ple Networl_

W33, r

W33, r

(Con't)

V_33, r +-

(C on't)

Yl Y2 Yl Y3

, 0 0 _ 0

3

0

Y2 Y3 Y2 Y5

3 3

Y3 Y5 Y2 Y6
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and,

All = YZ Y4 _ Y3 Y4"

A12 = Y2 Y4 - Y4 Y6"

Al3 : Y2 %" + Y3 Y5 5"

A21 : - V2 Y4"

A22 Y1 Y4 + Y2 Y4 + Y4 Y5 + Y4 Y6"

A23 = - Y2 Y5"

A - 0.
31

A _- 0.
32

A33 = Y1 Y2 + Y1 Y3 + Y2 Y3 + Y2 Y5 + Y3 Y5

÷ Y3 Y5 ÷ Y3 Y6"

From this it is clear that no sign problem exists and all cofactors

are easily determined° It relates directly to the process of determining

2-trees of a reciprocal network with only one exception that directed

trees be considered with respect to reference vertices as discussed

above. The literature for finding 2-trees by computer abounds and we

now have an easy method of applying the benefits of this work to non-

reciprocal net_vorks.
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<Jo_c!u sions.

Thus far_ we have reviewed the current methods of topologic:d

_na[ysis of general networks and have proposed a new method. This

new r_cthod has the advantage of being the simplest in the sense that it

is an exclusively topological method where it used the simplest topo-

logical graph structure possible and the simplest process for deterr_-

ing Lhe terms in the expansion of the determinant and cofactors of the

n_ode admittance matrix. The method bears a strong relationship zo

topological analysis of reciprocal net_vorks and is verywell suited to

_r_]plementation by digital compute r.

All network functions can be related to the determinant of the node

admittance matrix and its cofactorso Therefore, the development shown

here including solutions to these problems in terms of trees and 2 trees

is applicable. However, some network functions are more conveniently

represented by 3-trees , [24J, 12_ • A natura] extension to this new

method would be to show the usefulness and significance of sets of

k-trees of the partly directed graph.
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